

Topic: Time Series skills and Applications II

Time: 45 mins

Marks:

/45 marks

Calculator Assumed

Question One: [6, 4, 4, 2, 6: 22 marks]

The number of visitors to Western Australia's Adventure World Theme Park follows a quarterly seasonal pattern each year. The following data for 2014 and 2015 is in thousands of people per quarter.

Quarter	2014	2015
1	636	671
2	320	311
3	130	141
4	506	504
Total	1592	1627

An Adventure World's company analyst predicts that there will be 1 680 000 visitors to Adventure world in 2016.

a) Complete the following table. (Give your answer to 2 decimal places).

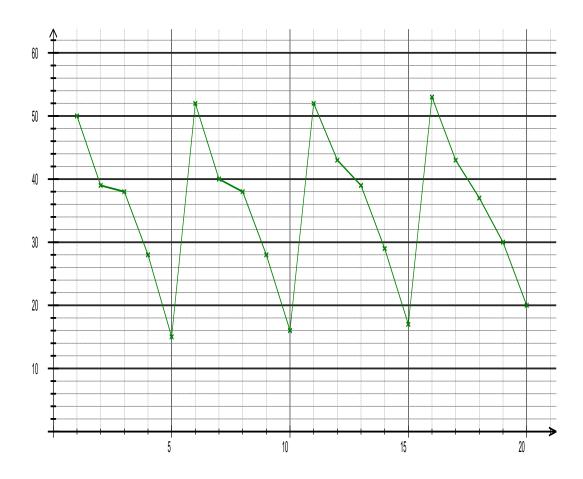
			Attendance
	Attendance	Yearly	as % of
Quarter		average	average
1	636		
2014 2	320		
3	130		
4	506		
1	671		
2015 2	311		
3	141		
4	504		

b) Calculate the seasonal indices for each quarter and explain what each figures means. (Give your answer to 2 decimal places).

Q1	Q2	Q3	Q4

c) Calculate the deseasonalised attendance figures for 2014 and 2015. (Give your answer to 2 decimal places).

	Deseasonalised
	data
1	
2	
3	
4	
1	
2	
3	
4	


- d) State the rule for the least squares regression line for the deseasonalised data. (Give your answer to 2 decimal places).
- e) Predict the actual attendance figures for 2016, rounding your answer to the nearest 1000 and compare this prediction to the prediction made by the company analyst.

Question Two: [4, 2, 2, 6, 4, 2, 3: 23 marks]

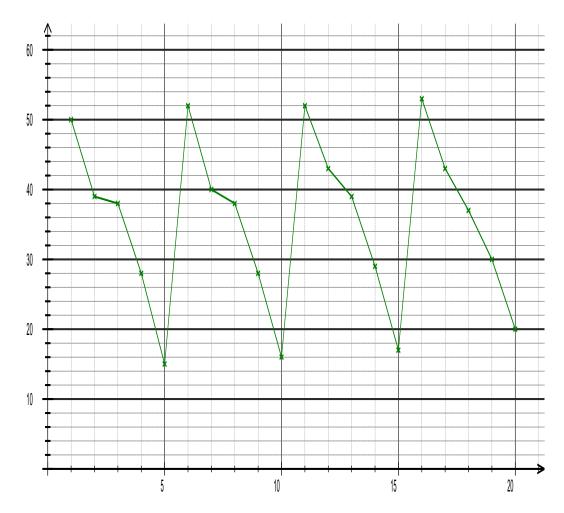
Consider the following data.

Day	Actual figures	5 point moving average	Average per cycle
1	50		
2	39		
3	38	34	34
4	28	34.4	
5	15	34.6	
6	52	34.6	
7	40	34.6	
8	38	34.8	34.8
9	28	34.8	
10	16	35.4	
11	52	35.6	
12	43	35.8	
13	39	36	36
14	29	36.2	
15	17	36.2	
16	53	35.8	
17	43	36	
18	37	36.6	36.6
19	30		
20	20		

a) Label the axis and add the 5 point moving average figures to the graph below of the actual data figures.

b) State the rule for the least squares regression line for the moving average data and the correlation coefficient.

To predict the actual figures using the moving average, the seasonal component needs to be added into the prediction. The seasonal component for day 21 is 17.


c) Use the least squares regression line to predict the moving average figure for the 21st day and add in the seasonal component to predict the actual figure.

d) Complete the following table to calculate the % of average figures and deseasonalised data.

Day	Actual figures	5 point moving average	Average per cycle	% of average	eseasonalised ata
1	50			147.06	
2	39			114.71	
3	38	34	34	111.76	
4	28	34.4		82.35	
5	15	34.6		44.12	
6	52	34.6			35.51
7	40	34.6			34.29
8	38	34.8	34.8		35.32
9	28	34.8			34.43
10	16	35.4			33.34
11	52	35.6		144.44	35.51
12	43	35.8		119.44	36.86
13	39	36	36	108.33	36.25
14	29	36.2		80.56	35.66
15	17	36.2		47.22	35.42
16	53	35.8		144.81	36.19
17	43	36		117.49	36.86
18	37	36.6	36.6	101.10	34.39
19	30			81.97	36.89
20	20			54.64	41.67

| Seasonal Index |
|----------------|----------------|----------------|----------------|----------------|
| day 1 | day 2 | day 3 | day 4 | day 5 |
| | | | | |

e) Label the axis and add the deseasonalised data figures to the graph containing the actual figures below.

- f) State the rule for the least squares regression line for the deseasonalised data and the correlation coefficient.
- g) Use the deseasonalised data and the seasonal index to predict the figures for the 21^{st} day. Compare this to the prediction made in part c).

Topic: Time Series Skills and Applications II SOLUTIONS

Marks:

/45 marks

Question One: [6, 4, 4, 2, 6: 22 marks]

Calculator Assumed

Time: 45 mins

The number of visitors to Western Australia's Adventure World Theme Park follows a quarterly seasonal pattern each year. The following data for 2014 and 2015 is in thousands of people per quarter.

Quarter	2014	2015
1	636	671
2	320	311
3	130	141
4	506	504
Total	1592	1627

An Adventure World's company analyst predicts that there will be 1 680 000 visitors to Adventure world in 2016.

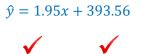
a) Complete the following table (give your answer to 2 decimal places).

			Attendance	
	Attendance	Yearly	as % of	
Quarter		average	average	
1	636		159.80	
2014 2	320	398	80.40	V
3	130	\checkmark	32.66	v
4	506		127.14	
1	671		164.97	
2015 2	311	406.75	76.46	\checkmark
3	141		34.67	
4	504	V	123.91	

b) Calculate the seasonal indices for each quarter and explain what each figures means. (give your answer to 2 decimal places)

Q1	Q2	Q3	Q4
162.39	78.43	33.67	125.53
			,

First quarter attendance tends to be about 62.39% above the average, second quarter attendance tends to be about 21.57% below the average, third quarter attendance tends to be about 66.33% below the average and fourth quarter attendance tends to be 25.53% above the average.


c) Calculate the deseasonalised attendance figures for 2014 and 2015.

	Deseasonalised data	\checkmark
1	391.65	
2	408.01	V
3	386.10	
4	403.09	v
1	413.20	
2	396.53	\checkmark
3	418.77	
4	401.50	

(give your answer to 2 decimal places).

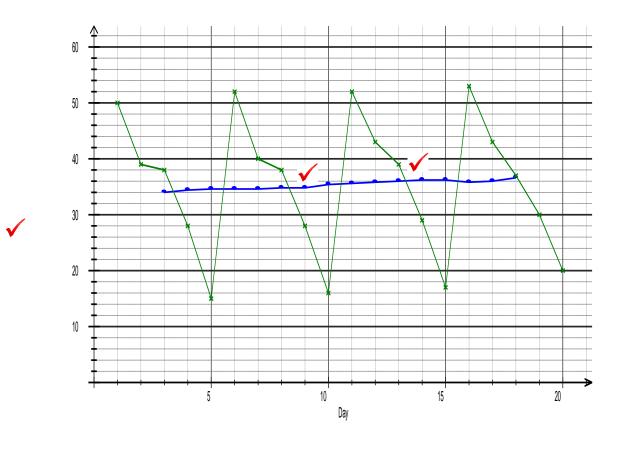
d) State the rule for the least squares regression line for the deseasonalised data.

(give your answer to 2 decimal places).

e) Predict the actual attendance figures for 2016, rounding your answer to the nearest 1000 and compare this prediction to the prediction made by the company analyst.

	Predictions for	Multiply by	Attendance
	deseasonalised	seasonal index	Predictions
	data for 2016	to get actual	
9	411.15	predictions \rightarrow	667.67
10	413.10		323.99
11	415.06		139.75
12	417.01		523.47
	\checkmark		

Total number of attendees in 2016 is predicated to be approximately 1 655 000 \therefore the analyst was a little bit too generous with the prediction.


www.educationequals.com

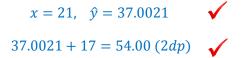
Question Two: [4, 2, 2, 6, 4, 2, 3: 23 marks]

Consider the following data.

Day	Actual figures	5 point moving average	Average per cycle
1	50		
2	39		
3	38	34	34
4	28	34.4	
5	15	34.6	
6	52	34.6	
7	40	34.6	
8	38	34.8	34.8
9	28	34.8	
10	16	35.4	
11	52	35.6	
12	43	35.8	
13	39	36	36
14	29	36.2	
15	17	36.2	
16	53	35.8	
17	43	36	
18	37	36.6	36.6
19	30		
20	20		

a) Label the axis and add the 5 point moving average figures to the graph below of the actual data figures.

b) State the rule for the least squares regression line for the moving average data and the correlation coefficient.

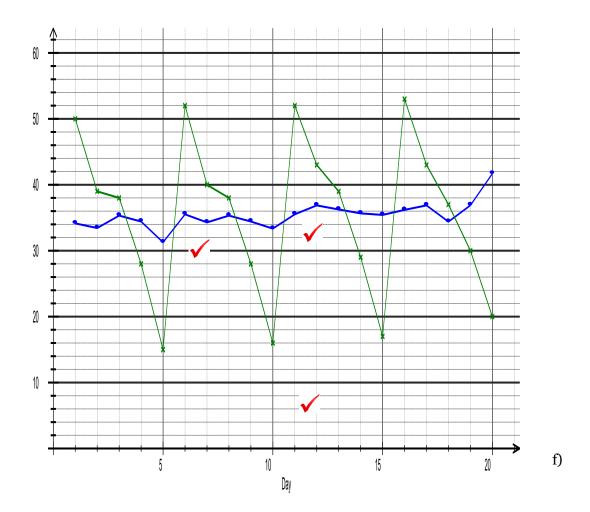

Correlation Coefficient r = 0.9566

 $\hat{y} = 0.1585x + 33.6729$

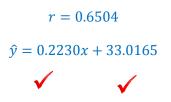
 \checkmark

To predict the actual figures using the moving average, the seasonal component needs to be added into the prediction. The seasonal component for day 21 is 17.

c) Use the least squares regression line to predict the moving average figure for the 21st day and add in the seasonal component to predict the actual figure.


d) Complete the following table to calculate the % of average figures and deseasonalised data.

Day	Actual figures	5 point moving average	Average per cycle	% of average		Deseasonalised data	
1	50			147.0588		34.14	
2	39			114.7059		33.43	V
3	38	34	34	111.7647		35.32	
4	28	34.4		82.35294		34.43	\checkmark
5	15	34.6		44.11765		31.26	
6	52	34.6		149.4253		35.51	
7	40	34.6		114.9425	V	34.29	
8	38	34.8	34.8	109.1954	./	35.32	
9	28	34.8		80.45977	•	34.43	
10	16	35.4		45.97701		33.34	
11	52	35.6		144.4444		35.51	
12	43	35.8		119.4444		36.86	
13	39	36	36	108.3333		36.25	
14	29	36.2		80.55556		35.66	
15	17	36.2		47.22222		35.42	
16	53	35.8		144.8087		36.19	
17	43	36		117.4863		36.86	
18	37	36.6	36.6	101.0929		34.39	
19	30			81.96721		36.89	
20	20			54.64481		41.67	


| Seasonal Index |
|----------------|----------------|----------------|----------------|----------------|
| day 1 | day 2 | day 3 | day 4 | day 5 |
| 146.43 | 116.64 | 107.60 | 81.33 | |

 \checkmark \checkmark

e) Label the axis and add the deseasonalised data figures to the graph containing the actual figures below.

State the rule for the least squares regression line for the deseasonalised data and the correlation coefficient.

g) Use the deseasonalised data and the seasonal index to predict the figures for the 21st day. Compare this to the prediction made in part c).

 $x = 21 \hat{y} = 37.7005$ $37.7005 \times 1.4643 = 55.20 (2dp)$

The correlation coefficient is higher for the moving average data than for the deseasonalised data. Both predictions are very very similar.

www.educationequals.com